Andrew Geller

Andrew Geller is a top GMAT tutor based out of New York City. Throughout his career he has successfully taught people from many different backgrounds, countries, and starting scores.

In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective?

In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective? A. 1/6 B. 2/9 C. 6/11 D. 9/16 E. 3/4 Correct Answer: C Full explanation coming soon. Send us a note […]

In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective? Read the Full Article »

The letters D, G, I, I, and T can be used to form 5-letter strings such as DIGIT or DGIIT. Using these letters, how many 5-letter strings can be formed in which the two occurrences of the letter I are separated by at least one other letter?

The letters D, G, I, I, and T can be used to form 5-letter strings such as DIGIT or DGIIT. Using these letters, how many 5-letter strings can be formed in which the two occurrences of the letter I are separated by at least one other letter? A. 12 B. 18 C. 24 D. 36

The letters D, G, I, I, and T can be used to form 5-letter strings such as DIGIT or DGIIT. Using these letters, how many 5-letter strings can be formed in which the two occurrences of the letter I are separated by at least one other letter? Read the Full Article »

Of the 300 subjects who participated in an experiment using virtual-reality therapy to reduce their fear of heights, 40 percent experienced sweaty palms, 30 percent experienced vomiting, and 75 percent experienced dizziness. If all of the subjects experienced at least one of these effects and 35 percent of the subjects experienced exactly two of these effects, how many of the subjects experienced only one of these effects?

Of the 300 subjects who participated in an experiment using virtual-reality therapy to reduce their fear of heights, 40 percent experienced sweaty palms, 30 percent experienced vomiting, and 75 percent experienced dizziness. If all of the subjects experienced at least one of these effects and 35 percent of the subjects experienced exactly two of these effects, how

Of the 300 subjects who participated in an experiment using virtual-reality therapy to reduce their fear of heights, 40 percent experienced sweaty palms, 30 percent experienced vomiting, and 75 percent experienced dizziness. If all of the subjects experienced at least one of these effects and 35 percent of the subjects experienced exactly two of these effects, how many of the subjects experienced only one of these effects? Read the Full Article »

Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece

Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope? Read the Full Article »

For each student in a certain class, a teacher adjusted the student’s test score using the formula y = 0.8x + 20, where x is the student’s original test score and y is the student’s adjusted test score. If the standard deviation of the original test scores of the students in the class was 20, what was the standard deviation of the adjusted test scores of the students in the class?

For each student in a certain class, a teacher adjusted the student’s test score using the formula y = 0.8x + 20, where x is the student’s original test score and y is the student’s adjusted test score. If the standard deviation of the original test scores of the students in the class was 20,

For each student in a certain class, a teacher adjusted the student’s test score using the formula y = 0.8x + 20, where x is the student’s original test score and y is the student’s adjusted test score. If the standard deviation of the original test scores of the students in the class was 20, what was the standard deviation of the adjusted test scores of the students in the class? Read the Full Article »